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Preface

Over the past many years, the electric power grid has gone through transforma-
tive changes. This has been driven by the need to reduce carbon emissions, have
more monitoring to improve situational awareness and provide more choices
and participative ability to the customers. The net result is that the grid is
becoming more complex. Whereas the increased intelligence and capabilities
built into the system provide opportunities for operating the grid in innova-
tive ways that were not available earlier, they also introduce new possibilities of
more problems resulting in possibilities of more widespread failures.

The power grid is an infrastructure that develops with time and involves
decision-making that may be irreversible most of the time. For example, build-
ing a transmission line or a wind or solar farm are not things that one can undo
or change easily. So calculations to simulate the function of the new facilities
and how they will affect the overall system has always been a part of the plan-
ning and operation of power systems. It is for this reason that sophisticated
analysis and simulation tools have been a part of these processes, and these
tools have been going through transformations over time to suit new realities.

The same is true about the reliability analysis of power grid. The quantita-
tive reliability evaluation makes it possible to do appropriate trade-offs with
cost, emissions and other factors, resulting in a rational decision-making. The
tools for power system reliability analysis have been evolving over time as more
computational power has become available.

The material in this book has evolved through our teaching graduate and
undergraduate classes to our students primarily at Texas A&M, Michigan State
and National University of Singapore. The material has also been taught in
short courses at industry and other academic institutions. The choice and pre-
sentation of material is informed by our belief that a strong background in
fundamentals is essential to understanding, properly adopting and improving
the algorithms needed for reliability analysis. This is all the more important as
the power system becomes more complex and its basic nature changes due to
integration of renewable energy resources. More innovations in computational
methods will be required as the need develops for adapting to new situations.



xiv Preface

The material in this book is divided into two parts. The first part provides the
theoretical foundations, covering a review of probability theory, stochastic pro-
cesses and a frequency-based approach to understanding stochastic processes.
These ideas are explained by using examples that connect with the power
systems. Then both generic analytical and Monte Carlo methods are described.
This first part can serve as material for a reliability course in general. The sec-
ond part describes algorithms that have been developed for the reliability analy-
sis of the power grid. This covers generation adequacy methods, and multinode
analysis, which includes both multiarea as well as composite power system
reliability evaluation. Then there are two chapters, one illustrating utilization
of this material in energy planning and the second on integration of renewable
resources that are characterized by their intermittent nature as energy sources.

Chanan Singh
Panida Jirutitijaroen
Joydeep Mitra
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3

1

Introduction to Reliability

1.1 Introduction

The term reliability is generally used to relate to the ability of a system to
perform its intended function. The term is also used in a more definite sense
as one of the measures of reliability and indicates the probability of not failing
by the end of a certain period of time, called the mission time. In this book,
this term will be used in the former sense unless otherwise indicated. In a
qualitative sense, planners and designers are always concerned with reliability,
but the qualitative sense does not help us understand and make decisions
while dealing with complex situations. However, when defined quantitatively
it becomes a parameter that can be traded off with other parameters, such as
cost and emissions.

There can be many reasons for quantifying reliability. In some situations, we
want to know what the reliability level is in quantitative measures. For example,
in military or space applications, we want to know what the reliability actually
is, as we are risking lives. In commercial applications, reliability has a definite
trade-off with cost. So we want to have a decision tool for which reliability needs
to be quantified. The following example will illustrate this situation.

Example 1.1 A system has a total load of 500 MW. The following options are
available for satisfying this load, which is assumed constant for simplicity:

5 generators, each with 100 MW;
6 generators, each with 100 MW;
12 generators, each with 50 MW.

The question we need to answer in terms of design and operation aspect is:
Which of these alternatives has the best reliability?

A little thinking will show that there is no way to answer this question with-
out some additional data on the stochastic behavior of these units, which are
failure and repair characteristics. After we obtain this data, models can be built
Electric Power Grid Reliability Evaluation: Models and Methods, First Edition. Chanan Singh,
Panida Jirutitijaroen, and Joydeep Mitra.
© 2019 by The Institute of Electrical and Electronic Engineers, Inc. Published 2019 by John Wiley & Sons, Inc.



4 Electric Power Grid Reliability Evaluation

to quantify the reliability for these three cases, and then the question can be
answered.

1.2 Quantitative Reliability

Most of the applications of reliability modeling are in the steady state domain or
in the sense of an average behavior over a long period of time. If we describe the
system behavior at any instance of time by its state, the collection of possible
states that the system may assume is called the state space, denoted by S.

In reliability analysis, one can classify the system state into two main cate-
gories, success or failure states. In success states the system is able to do its
intended function, whereas in the failed states it cannot. We are mostly con-
cerned with how the system behaves in failure states. The basic indexes used to
characterize this domain are as follows.

Probability of failure
Probability of failure, denoted by pf , is the steady state probability of the system
being in the failed state or unacceptable states. It is also defined as the long run
fraction of the time that system spends in the failed state. The probability of
system failure is easily found by summing up the probability of failure states as
shown in (1.1):

pf =
∑

i∈Y
pi, (1.1)

where
pf system unavailability or probability of system failure;
Y set of failure states, Y ⊂ S;
S system state space.

Frequency of failure
Frequency of failure, denoted by ff , is the expected number of failures per unit
time, e.g., per year. This index is found from the expected number of times that
the system transits from success states to failure states. As will be seen clearly
in Chapter 4, this index can be easily obtained by finding the expected number
of transitions across the boundary of subset Y of failure states.

Mean cycle time
Mean cycle time, denoted by Tf , is the average time that the system spends
between successive failures and is given by (1.2). This index is simply the recip-
rocal of the frequency index:

Tf = 1
ff
. (1.2)
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Mean down time
Mean down time, denoted by TD, is the average time spent in the failed states
during each system failure event. In other words, this is the expected time of
stay in Y in one cycle of system up and down periods. This index can be found
from (1.3):

TD =
pf

ff
. (1.3)

Mean up time
Mean up time, denoted by TU , is the mean time that the system stays in the up
states before system failure and is given by (1.4):

TU = Tf − TD. (1.4)

There are several other indices that can be obtained as a function of the above
indices, and these will be discussed in Chapter 5.

There are also applications in the time domain, say [0, T]. For example, at
time 0, we may be interested in knowing the probability of not having sufficient
generation at time T in helping decide the start of additional generation. The
following indices could be used in such situations:

1. Probability of failure at time T
This indicates the probability of being in the failed state at time T . This does
not mean that the system did not fail before time T . The system may have
failed before T and repaired, so this only indicates the probability of the sys-
tem being in a failed state at time T .

2. Reliability for time T
This is the probability that the system has not failed by time T .

3. Interval frequency over [0, T]
This is the expected number of failures in the interval [0, T].

4. Fractional duration
This is the average probability of being in the failed state in interval [0, T].

The most commonly computed reliability measures can be categorized as
three indices as follows.

1. Expected value indexes: These indices involve
Expected Power Not Supplied (EPNS) or Expected Unserved Energy (EUE).

2. Probability indices such as
Loss of Load Probability (LOLP) or Loss of Load Expectation (LOLE).

3. Frequency and duration indices such as
Loss of Load Frequency (LOLF) or Loss of Load Duration (LOLD).
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1.3 Basic Approaches for Considering Reliability in
Decision-Making

Having quantified the attributes of reliability, the next step is to see how it can
be included in the decision process. There are perhaps many ways of doing it,
but the most commonly used are described in this section. It is important to
remember that the purpose of reliability modeling and analysis is not always to
achieve higher reliability but to attain the required or optimal reliability.

Reliability as a constraint
Reliability can be considered a constraint within which other parameters can be
changed or optimized. Until now this is perhaps the most common manner in
which reliability considerations are implemented. For example, in generation
reliability there is a widely accepted criterion of loss of load of one day in 10
years.

Reliability as a component of overall cost optimization
The conceptual relationship between cost and reliability can be appreciated
from Figure 1.1. The overall cost is a combination of the investment cost and the
cost of failures to the customers. The investment cost would tend to increase if
we are interested in higher levels of reliability. The cost of failures to the cus-
tomers, on the other hand, tends to decrease with increased level of reliability.
If we combine these costs, the total cost is shown by the solid curve, which has
a minimum value. The reliability at this minimum cost may be considered an
optimal level; points to the left of this would be dominated by customer dis-
satisfaction, while points to the right may be dominated by investment cost
considerations.

It can be appreciated that in this type of analysis we need to calculate the
worth of reliability. In other words, how much do the customers think that
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Figure 1.1 Trade-off between
reliability and cost.


