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Preface

Ferrite phase-shifter and control devices are widely used in conjunction with
passive microwave circuits in beam shaping and steering of array antennas
and in multichannel switching. The intention of this text is to provide the reader
with some preliminary insight into the operation of some basic ferrite control
devices and to note some system uses. In the beam steering application, variable
phase-shifters are employed to tilt the beam of a simple one-dimensional array
or more sophisticated two- and three-dimensional ones. Beam shaping is
achieved by using variable power dividers and switches. At modest microwave
wavelengths, this is often done with the aid of semiconductor devices, but at
very high power levels and at millimeter wavelengths, ferrite devices are used
almost exclusively. A drawback of the ferrite control device is its longer switch-
ing time; its microwave power rating is, however, usually superior. Although
many ferrite devices are nonreciprocal, this is often not essential or indeed
desirable in the control area. Mechanically actuated passive switches and vari-
able phase shifters using rotatable half-wave plates are other possibilities. Mul-
tichannel switchingmay consist of making provisions for switching on a standby
transmitter in case of a failure mode in some simple radar or satellite equipment
or it may involve the control of a high-power signal using Butler matrices; it may
also be utilized in the construction of multiport power combiners. The three-
port junction circulator is, of course, also ideally suited for switching a signal at
one port to any of n − 1 others. Frequency reuse where spatially isolated beams
operate in the same frequency band is another area where power dividers and
variable phase shifters are required. Switching of the hand of polarization of a
wave or rotating its polarization are other applications. Microwave ferrite
phase-shifters and other devices essentially rely for their operation on the dif-
ferent birefringences exhibited by a magnetized magnetic insulator under the
influence of different direct and alternating magnetic fields. Nonlinear effects
or spinwave instabilities at large signal levels are a separate consideration.
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1

Microwave Switching Using Junction Circulators
Joseph Helszajn

Heriot Watt University, Edinburgh, UK

1.1 Microwave Switching Using Circulators

Since the direction of circulation of a circulator is determined by that of the
direct magnetic field, it may be employed to switch an input signal at one port
to either one or the other two. Switching is achieved by replacing the permanent
magnet by an electromagnet or by latching the microwave ferrite resonator
directly by embedding a current carrying wire loop within the resonator.
The schematic diagram of a switched junction is shown in Figure 1.1a. It is

particularly useful in the construction of Butler-type matrices in phase array
systems. A single-pole three throw version is depicted in Figure 1.1b.
Two common arrangements in which ferrite circulators may be employed to

obtain microwave switching are separately illustrated in Figure 1.1c and 1.1d.
The first uses a circulator in conjunction with a pin diode switch to vary the
short-circuit plane terminating port 2. A transmission analog phase shifter is
therefore obtained between ports 1 and 3 with this mode of operation. The sec-
ond version is also a transmission configuration but now a switchable circulator
is used to control the path between ports 1 and 3 of the circulator. The switching
speed of the pin device is normally the faster one.

1.2 The Operation of the Switched Junction Circulator

The adjustment of a fixed field circulator or a switched circulator is a two-step
procedure. The first fixes its midband frequency and the second its gyrotropy.
A phenomenological description of these two operations is illustrated in

1
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(a)

(b)

(c)

(d)

2

1

3

4

2

In

In

In
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Out
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𝜙

𝜙

Figure 1.1 Microwave phase shifter using (a) schematic of circulator switch, (b) SP4T Butler
switch using circulators, (c) pin dioded switch and fixed circulator, and (d) switched circulator.
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Figure 1.2a and b in the case of a stripline geometry. The direction of circulation
is here fixed by the sense of the direct magnetic field intensity along the axis of
the resonator. This may be done by either internally latching the hysteresis loop
of the magnetic insulator between its two remanent states or by having recourse
to an external magnetic circuit. The electric field pattern may be rotated either
clockwise or anticlockwise by splitting the degeneracy of the counterrotating
field patterns of the resonator. A latched stripline geometry is indicated in
Figure 1.3.

Ground plane

(a)

(b)

Magnetic field
Electric field

Ferrite resonator
Magnetic wall

Center conductor

Figure 1.2 Standing wave patterns in (a) demagnetized stripline junction and (b)
magnetized stripline junction.
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1.3 The Turnstile Circulator

The waveguide junction switch is usually but not exclusively based on a Faraday
rotation effect along a quarter-wave long cavity resonator open-circuited at one
flat face and short-circuited at the other. Its first circulation condition is a 90

Ground plane

Ferrite
disk

Center
conductor

Wire

Ferrite
disk

Current

Wire loop

Magnetic field

R

r

Figure 1.3 Current and magnetic field in ferrite disc.
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cavity with no rotating of the electric field pattern, which is again a figure of
eight pattern. Its second circulation condition is obtained by replacing the die-
lectric resonator by a gyromagnetic insulator. The effect is to rotate the polar-
ization of the electric field by a 15 angle in the positive direction of propagation
and a further 15 in the opposite direction. The total rotation places an electric
null at a typical output port.
Figure 1.4a and b are sketches of the electric and magnetic HE11 standing

wave patterns about midway along the cavity. The electric field is zero at the
electric wall of the cavity, whereas the magnetic field is zero at its magnetic flat
wall.

1

23

2
3

1

(a)

(b)

Figure 1.4 (a) Ferrite
unmagnetized; first circulation
condition. (b) Ferrite magnetized;
second circulation condition.
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Switching ferrite

Magnetizing coil
Conductive coil
Circulator ferrite
Dielectric spacer
Metallic transformer

Dielectric sleeve

Figure 1.5 Schematic diagram of externally latched circulator using a post-resonator
waveguide junction.

Switching wire

Switching wire

Waveguide

(a)

(b)

Ferrite resonator
Dielectric disc

Metal insert

Waveguide

Ferrite resonator
Dielectric disc
Metal insert

Figure 1.6 Schematic diagram of waveguide junction circulator using a partial height: (a)
triangular and (b) circular resonator with a wire loop.



1.4 Externally and Internally Latched Junction
Circulators

Circulators may be either actuated by an electromagnet or they may be operated
by internally or externally latching the ferrite resonator. Figure 1.5 illustrates
one externally latched arrangement. Figure 1.6a and b depict internally latched
waveguide devices using half-wave or quarter-wave long resonators.
Figure 1.7 indicates the two possible wire configurations met in the construc-

tion of a waveguide switch using a prism resonator.

1.5 Standing Wave Solution of Resonators with
Threefold Symmetry

Two resonators met in the design of switched circulators with threefold sym-
metry are the equilateral triangle structure and the quasi WYE geometry.

Switching wire

(a) (b)

(c)

Waveguide
Ferrite resonator
Dielectric disc
Metal insert

Figure 1.7 Schematic diagrams of waveguide circulators showing different switching wire
configurations.
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The standing wave solution of the second circulation solutions is here not obvi-
ous but eachmay be constructed by taking suitable linear combinations of those
of the first circulation condition. Figure 1.8a and b illustrate the equipotential
lines of the standing wave patterns in each situation.

1.6 Magnetic Circuit Using Major Hysteresis Loop

The direct magnetic field in a junction circulator can be established using either
an external electromagnet or it can be switched by current pulses through a
magnetizing wire between the two remanent states of the major or indeed of
a minor hysteresis loop of a closed magnetic circuit. The former arrangement
requires a holding current to hold the device in a given state.
In the latter one, however, no such current is necessary; the device remains

latched in a given state until another switching operation is required. The
advantages and disadvantages of each type of circuit are understood.
Operation on themajor hysteresis loopmay be understood by scrutinizing the

hysteresis loop in Figure 1.9, providing it is recognized that the size and shape of
this loop may vary with the speed of the switching process. In this situation, the
magnetization of the toroid is driven between two remanent states (±4πMr)

+3.0 V

(a)

(b)

+4.5 V

–4.5 V

+1.5 V

+3.0 V

+2.0 V

+2.0 V

+1.0 V

+1.0 V

–1.0 V
–1.5 V

–1.5 V

–1.0 V

–1.5 V

–1.5 V

–1.5 V

0 V

0 V

0 V

0 V

+II

Figure 1.8 Standingwave solution of three-port circulators using (a) triangular resonator and
(b) WYE resonator.
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equidistant from the origin by the application of a current pulse sufficiently
large to produce a field perhaps three or five times that of the coercive force.
After this point is reached, the current pulse is removed and the magnetiza-

tion will move to the remanent value (±4πMr) and remain there until another
switching operation is desired. This sort of electronic driver circuit is relatively
simple since it is only required that the toroids be driven back and forth between
the major remanent states of the hysteresis loop.

1.7 Display of Hysteresis Loop

The magnetic properties and parameters of a magnetic core or toroid under dif-
ferent operating conditions, such as temperature, say, are best discussed in
terms of the details of its hysteresis loop.
Some experimental quantities that are of particular interest include the sat-

uration magnetization (M0), the remanent magnetization (Mr), and the coercive
force (Hc). The experimental display of such loops is therefore of some interest.
One circuit that may be used for this purpose is outlined in Figure 1.10. This

–4πMr

4πMr

–4πMmax

+4πMmax

H

M

Figure 1.9 Typical hysteresis loop of a latching phase shifter operating with a major
hysteresis loop switching.
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arrangement develops voltage Vp and Vi that are proportional to B and H,
respectively.
The magnetic field (H) in the core is monitored by measuring the voltage (Vp)

across a resistor in series with the primary winding, see Figure 1.10.

H =
Np

Ip

Vp

Rp
,Am−1 1 1

where Ip is the effective of the primary winding,Np is the number of turns of the
primary winding (10–30), and Rp is the resistor in series with the primary coil
(10Ω). The magnetization (B) is likewise evaluated by forming the voltage (Vi)
across the capacitance of the RC integrator in the secondary circuit.

B≈
−ViRiCi

NsA
1 2

where Ri is the series resistance of the integrator (100 kΩ), Ci is the capacitance
of the integrator (0.10 μF), Ns is the number of turns of the secondary winding
(10–30), and A is the cross-sectional area of the core.
The data shown in Figure 1.11 on the effects of small air gaps on the square-

ness of the hysteresis loop have been obtained using the arrangement out-
lined here.

ip isNp Ns

Rs

Rp
Csecer

B

H

Power
amplifier

Audio
signal

generator

VerticalHorizontal

𝜙

Figure 1.10 Schematic diagram of hysteresis display.
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