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Preface

I dedicate this book to my advisor, Professor Feng-Chih Chang, who strongly
encouraged its writing about 10 years ago. At that time, I had just left his group
to start my research career independently at National Sun Yat-Sen University.
Since then, every time we met in his office we would discuss writing a book
together about hydrogen bonding in polymeric materials, and we had assem-
bled a rough outline of its contents. Unfortunately, Professor Chang passed away
in 2014. I began to pay serious attention to this project in 2015, when Wiley
invited me to publish a book about supramolecular interactions—quite close to
our original concept. Although only some of the results described in this book
were published independently by Professor Chang’s group, I feel it is appropriate
to say “our group” herein to appreciate his great contributions to this field.

In 1998, I entered Professor Chang’s group and began investigating hydrogen
bonding interactions in polymer blend systems. Our group was the first to pub-
lish several important findings in the field at around that time. Chapter 1 provides
an introduction to the nature of hydrogen bonds and describes several meth-
ods (including Fourier transform infrared (FTIR) and nuclear magnetic reso-
nance (NMR) spectroscopy) for characterizing them. Chapter 2 discusses the
factors that influence hydrogen bonding in polymer blend systems, how to deter-
mine their thermodynamic properties (including use of the association model
approach), and how to enhance the miscibility of polymer blends through hydro-
gen bonding. Chapter 3 describes the physical properties of polymeric materi-
als capable of hydrogen bonding, including their thermal properties, dynamic
behavior, and crystalline structures. Chapter 4 discusses the surface properties
of polymeric materials. In 2006, we were the first to develop polybenzoxazine, a
fluorine- and silicone-free polymer, that has a low surface free energy as a result of
strong intramolecular hydrogen bonds; PVPh is another polymeric material hav-
ing a low surface free energy, this time arising from both inter- and intramolecular
hydrogen bonds. This chapter also describes the potential applications of low
surface free energy polymers, including their use in nanoimprint technologies
and as superhydrophobic surfaces. Chapter 5 considers the sequence distribution
effects found in hydrogen-bonded copolymers, including random copolymers,
block copolymers, and polymer blend systems.

Chapter 6 describes the properties, in the bulk and in solution, of block
copolymer mixtures that form self-assembled structures stabilized through
hydrogen bonding interactions. Chapter 7 reports the preparation of
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mesoporous materials—particularly mesoporous silica and phenolic and
carbon materials—self-assembled, primarily through hydrogen bonding, from
block copolymer/homopolymer blends. Chapter 8 discusses the behavior
of two types of bioinspired macromolecules—polypeptides and DNA-like
polymers—that have properties dependent on their hydrogen bonding interac-
tions. Polypeptides prepared from polymer blends and block copolymers form
interesting secondary and self-assembled structures; DNA-like polymers are
materials featuring multiple hydrogen bonding interactions. Finally, Chapter 9
focuses on hydrogen bonding in POSS nanocomposites, the properties of which
are also strongly influenced by inter- and intramolecular interactions.

Herein, I acknowledge several important works that are described in this book
from more than 100 graduate students in Professor Chang’s group in National
Chiao-Tung University and my group in National Sun Yat-Sen University. Those
students worked hard on the hydrogen bonding in polymeric materials. I hope
this book is not only useful to the reader but also enjoyable to read. Understand-
ing hydrogen bonding is of fundamental importance to chemists, physicists, and
materials scientists. I will be honored if this book inspires its readers to apply
some of the concepts of hydrogen bonding to their own research—or, even better,
develop new ones not yet explored.

Shiao-Wei KuoNational Sun Yat-Sen University, Taiwan
August 2017
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1

Hydrogen Bonding in Polymeric Materials

1.1 Introduction

Hydrogen-bonding, dipole–dipole, and ionic interactions in polymers have been
of great interest to fundamental polymer science, and also industrially, for over
30 years. These secondary or noncovalent interactions can be introduced specifi-
cally into polymeric materials to form supramolecular materials displaying inter-
esting thermal, mechanical, surface, and optoelectronic properties. The concept
of noncovalent bonding has changed the thinking of polymer scientists, who had
been focused for many years primarily on the effects of covalent interactions.

Hydrogen bonds (H-bonds) are interactions that result from dipole–dipole
forces between strongly electronegative atoms (e.g., fluorine (F), nitrogen (N),
oxygen (O)), and hydrogen atoms; they affect the physical properties and
microstructures of many materials [1–6]. For example, water is recognized
to form tetrahedral clusters comprising 14 molecules of H2O; the unusual
properties of water arise mainly from the fact that water molecules readily
form H-bonds—4 of them—per water molecule, in a tetrahedral geometry
[7]. Other famous examples are the H-bonds found in biological systems [8],
where they play important roles affecting the three-dimensional structures of
nucleic bases and proteins. The DNA double helix is formed from multiple
H-bonding interactions between complementary cytosine/guanine (C/G) and
adenine/thymine (A/T) base pairs; these noncovalent interactions link the
two complementary strands and enable replication. Furthermore, H-bonds
greatly influence the secondary structures of polypeptides: the α-helix confor-
mation is stabilized by intramolecular (or intrachain) H-bonding, while the
β-sheet conformation is stabilized by intermolecular (or interchain) H-bonding
[9, 10]. In addition to these famous natural examples, H-bonding also has several
profound effects in unnatural polymeric materials, influencing various physical,
thermal, and mechanical properties, including melting points (Tm), crystalline
structures, glass transition temperatures (Tg), surface properties, optoelectronic
properties, and solubilities (in solvents) and miscibilities (in polymer blends).

Although there are already several reviews on H-bonded polymer blends,
copolymers, self-assembled supramolecular structures, and nanocomposite sys-
tems [11–21], this book aims to provide a thorough discussion of how H-bonding
interactions have been used in research into polymer blends, surface properties,

Hydrogen Bonding in Polymer Materials, First Edition. Shiao-Wei Kuo.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 Hydrogen Bonding in Polymer Materials

self-assembled block copolymers, mesoporous materials, biomacromolecules,
and polyhedral oligomeric silsesquioxanes (POSS) nanocomposites.

1.1.1 Hydrogen Bonds

Hydrogen bonding is a fundamental interaction in chemistry, physics, and
biology and has been described extensively in many books [22] and reviews
[23]. The H-bond is a directed, attractive, noncovalent bonding interaction
between an A–H unit (proton donor) and a B atom (proton acceptor) in the
same molecule or in different molecules, where the A and B atoms are generally
highly electronegative (e.g., F, N, O), although even C–H groups can be involved
in H-bonding and some π-electrons can act as weak H-bond acceptors [24, 25].
The H-bond can also be characterized by its effect on the physical properties
or molecular characteristics of a material. A covalent bond usually has strength
on the order of 50 kcal mol−1; H-bonds most often have stabilities in the range
1–40 kcal mol−1 (in comparison, van der Waals attraction is favorable by only
approximately 0.2 kcal mol−1). A strong H-bond has strength in the range
10–40 kcal mol−1; a moderate H-bond, 4–10 kcal mol−1; and a weak H-bond,
1–4 kcal mol−1 [26].

Hydrogen bonding can be either an intermolecular or intramolecular phe-
nomenon. An intermolecular H-bond (Figure 1.1) is one for which the donor
and acceptor units are found in two different molecules; for an intramolecular
H-bond (Figure 1.2) they are in the same molecule. Intermolecular H-bonds
are usually linear or near linear, whereas intramolecular H-bonds usually
feature some degree of bending. In polymers, two different types of H-bonding
can occur for the same functional group, namely, interchain and intrachain
H-bonding interactions. For example, the α-helix conformation of a polypeptide
is stabilized by intrachain H-bonding, while the β-sheet conformation is stabi-
lized by interchain H-bonding. The strength of an H-bond is strongly dependent
on the solvent polarity; the addition of a polar solvent can decrease the H-bond

C

O

O H N

O H O C
O

C

O

O

N H O

N

N H N

N

N

NO

O

NHH

(a) (b)

(c) (d)

Figure 1.1 Intermolecular H-bonding between two molecules. (a) Urethane–ether complex;
(b) hydroxyl–carbonyl complex; (c) acid–pyridine complex; and (d) adenine–thymine complex.
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Figure 1.2 Intramolecular H-bonding of a single molecule. (a) Malonaldehyde; (b) salicyclic
acid; and (c) formazan.

strength significantly, over several orders of magnitude, because the solvent
molecule can also take part in H-bonding interactions. As a result, nonpolar
solvents (e.g., toluene, CHCl3, and linear and cyclic alkanes) are mostly used for
the preparation of H-bonded supramolecular materials.

1.1.2 Characterization of Hydrogen Bonding

Several spectroscopic methods are commonly used to characterize H-bonds:
(i) Fourier transform infrared (FTIR) and Raman spectroscopy, in which the
stretching and bending vibrations of the donor or acceptor functional groups
are influenced by the presence of H-bonds; (ii) ultraviolet (UV) and fluores-
cence spectroscopy, which reveal changes in the electronic levels of molecules
experiencing H-bond interactions; (iii) nuclear magnetic resonance (NMR)
spectroscopy, where changes in chemical shifts can arise from H-bond interac-
tions of the donor and acceptor functional groups; and (iv) X-ray photoelectron
(XPS) spectroscopy, where a new shoulder or even a new peak can appear as
a result of a change in the chemical environment of an atom perturbed by the
H-bonding [27–30].

Among these methods for characterizing H-bonds, by far the most inexpen-
sive and sensitive is FTIR spectroscopy. For example, Figure 1.3 presents the CO
stretching range of the FTIR spectra of H-bonded phenolic/PCL blends of various
compositions. The signal for C=O stretching in this phenolic/PCL blend splits
into two bands: a signal at higher wavenumber (1734 cm–1) corresponding to the
free C=O groups of PCL, and one at relatively lower wavenumber (1708 cm–1)
representing the C=O groups of PCL H-bonded with phenolic OH groups. If we
can resolve these peaks into two Gaussian functions, we can quantify the fraction
of H-bonded C=O groups using the appropriate absorptivity ratio between the
two peaks. Using this approach, we can see that the fraction of H-bonded C=O
groups of PCL increased upon increasing the content of phenolic in the blend
[31].

In addition to one-dimensional (1D) infrared (IR) spectra (e.g., in Figure 1.3),
two-dimensional (2D) correlation spectroscopy can also be used to characterize
H-bonding interactions in polymer materials [32–34]. Through measurements
of spectral perturbations in response to temperature, time, composition, or
pressure, we can identify inter- or intramolecular H-bond interactions through
analyses of the selected bands based on the corresponding 1D infrared spectra.
Figure 1.4 displays a typical 2D-IR correlation spectrum of PVPh/PVPK blends
in the region 1500–1700 cm–1 [35]. The spectrum features two independent axes
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Figure 1.3 Typical infrared (IR) spectra,
displaying the C=O stretching region,
of phenolic/PCL blends.
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Figure 1.4 2D Fourier transform infrared (FTIR) correlation maps of PVPh/PVPK blends:
(a) synchronous and (b) asynchronous maps [35].

for the wavenumber, as well as the correlation intensity. White and shadowed
areas represent positive and negative cross-peaks, respectively, in the 2D contour
maps. Two types of 2D correlation spectra are generally obtained: synchronous
spectra (Figure 1.4a), in which the correlation intensity indicates the relative
in-phase degree, and asynchronous spectra (Figure 1.4b), in which the correla-
tion intensity indicates the relative out-of-phase degree. The correlation map in
the 2D synchronous spectrum in Figure 1.4a was symmetrical corresponding
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to the diagonal line. These intensities of auto-peaks in 2D synchronous spectra
should be positive when located at the diagonal line, corresponding to the
autocorrelation degree from perturbation-induced molecular vibration. The
cross-peaks in 2D synchronous spectra may possess positive (white) or negative
(shadow) intensities, corresponding to simultaneous and coincidental changes
in the variations of the correlation intensities measured at off-diagonal positions
for two different wavenumbers (v1, v2). A positive cross-peak results when the
changes in the signals at these two wavenumbers (v1, v2) occur in the same
direction under the environmental perturbation (i.e., both increase or both
decrease). If the signals at the two wavenumbers (v1, v2) change in opposite
directions under the environmental perturbation (i.e., one decreases while
the other increases), a negative cross-peak will appear. The asynchronous
cross-peaks can also be either positive or negative, giving sequential order
information for the external variable. Figure 1.4b displays the asymmetric 2D
asynchronous spectrum corresponding to the diagonal line.

Figure 1.4a reveals positive cross-peaks for the correlation intensity of the
signal at 1680 cm–1 with those at 1612 and 1510 cm–1, implying intermolecular
H-bonding between the phenolic OH groups of PVPh (1612 and 1510 cm–1) and
the C=O groups of PVPK (1680 cm–1), with changes in the same direction. It
also reveals positive cross-peaks between the signals at 1612 cm–1 (PVPh) and
1580 cm–1 (PVPK), implying π–π interactions among the aromatic rings of PVPh
and PVPK, again in the same direction. As a result, the intermolecular inter-
actions in PVPh/PVPK blends arise not only from intermolecular OH· · ·O=C
H-bonding but also from π–π interactions of the aromatic rings. Figure 1.4b
displays the 2D asynchronous spectrum of the PVPh/PVPK blend. The positive
peaks at (1580, 1612 cm–1), (1612, 1680 cm–1), and (1680, 1580 cm–1) imply that
the sequence of order in the spectra is 1612> 1680> 1580 cm–1, based on the
changes in intensity of these three observed bands according to Noda’s rule [36].

Solid-state NMR spectroscopy can also provide useful information for identify-
ing H-bonding, by observing the line shapes or chemical shifts in the spectra that
are sensitive to the local chemical environment. Figure 1.5 provides an example of
this chemical shift in the 13C solid-state NMR spectra of a phenolic/PVAc binary
blend [37]. Downfield chemical shifts occurred for the signals of the C=O groups
of PVAc (by about 3 ppm) and the OH-substituted carbon atoms in the pheno-
lic resin (by about 2.3 ppm), implying that the H-bonding interactions existed
in the phenolic/PVAc blend. The chemical environments of neighboring nuclei
can also be influenced by H-bonding in polymer blend systems, leading to down-
field chemical shifts that are widely used to provide evidence for H-bonding in
polymer blend systems. In addition, the C=O units in the 13C solid-state NMR
spectra were also resolved into two peaks—similar to the situation in FTIR spec-
tra (cf. Figure 1.3)—that represented the free (high field at about 171 ppm) and
H-bonded (downfield at about 174 ppm) C=O groups of PVAc. The fraction of
H-bonded C=O groups of PVAc increased upon increasing the concentration
of phenolic resin, similar to the observation in the FTIR spectroscopic analysis.
Solid-state NMR spectroscopy can also provide evidence for the miscibility scale
of H-bonded polymer blend systems, determined from the proton spin–lattice
relaxation time [T1(H)] [38–40]; a single, composition-dependent value of T1(H)
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Phenolic/PVAc blend

(a) 50/50

(b) 40/60

(c) 25/75

(d) 0/100

185 180 175

Chemical shift (cm–1)

170 165 160

Figure 1.5 Solid-state nuclear
magnetic resonance (NMR) spectra and
corresponding curve-fitting results for
phenolic/PVAc blends [37].

in a polymer blend system represents a homogeneous amorphous phase to the
scale by the spin diffusion within the time occurring.
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2

Hydrogen Bonding in Polymer Blends

Polymer blends feature two or more polymers combined together; they often have
mechanical, thermal, and optoelectronic properties superior to those of their
individual polymers. For economical and practical purposes, the most convenient
and effective way to prepare new functional polymers is through a polymer blend
approach using commercially available polymers, taking advantage of their high
versatility and flexibility, rather than synthesizing a new material. Polymer blends
can be classified into three basic phase behaviors: (i) completely miscible, (ii)
immiscible, and (iii) partially miscible blend systems (Figure 2.1). Unfortunately,
most polymer blend systems are usually incompatible and immiscible, meaning
that their final products have properties inferior to those of the individual poly-
mers. Controlling interfacial tension is critical in these compatible polymer blend
systems to ensure obtaining desired blend morphologies and related physical
properties. Decreasing interfacial tension and decreasing the sizes of the dis-
persed phase are the most important factors affecting the physical properties;
most research activities related to polymer compatibilization in polymer blend
systems have aimed at obtaining uniform physical properties. Using block or graft
copolymers as efficient compatibilizers can lead to decreased interfacial tension
and suppressed coalescence of the dispersed domains of polymer blends. Never-
theless, microphase separation can occur with most block copolymers, resulting
in high viscosity and difficulty dispersing them into polymer blend systems, which
might also prefer to form micelle structures at higher block copolymer concen-
trations. To overcome the problems associated with using block copolymers as
compatibilizers, reactive compatibilization for incompatible polymer blends has
been investigated widely during the past two decades. The main advantage of a
reactive compatibilizer is the ability to suppress the coalescence of the dispersed
domains significantly in a polymer blend system, using covalent bonds to stabilize
the interface.

Figure 2.2 presents selected scanning electron microscopy (SEM) micrographs
of a PA6/PBT= 30/70 blend containing various contents of compatibilizer [1].
Disperse spherical particle size and the phase contrasts for all blending system
were decreased upon increasing the quantity of the compatibilizer. The epoxy
functional group of the compatibilizer was indeed an efficient compatibilization
agent, suppressing the phase coalescence with a smaller domain size based on
the morphological transformation. An effective compatibilizer can enhance the

Hydrogen Bonding in Polymer Materials, First Edition. Shiao-Wei Kuo.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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(a) (b) (c)

Figure 2.1 Typical morphologies of polymer blends classified as (a) miscible, (b) immiscible,
and (c) partially miscible.

(a) PA/PBT = 30/70 (b) PA/PBT/EPOXY
= 30/70/0.1 phr

(c) PA/PBT/EPOXY
= 30/70/0.3 phr

(d) PA/PBT/EPOXY
= 30/70/0.5 phr

Figure 2.2 SEM images of PA/PBT= 30/70 in the presence of various concentrations: (a) 0,
(b) 0.1, (c) 0.3, and (d) 0.5 phr for epoxy-functionalized compatibilizers [1]. (Chiou and Chang
2000 [1]. Reprinted with permission from John Wiley & Sons).

interfacial adhesion of a polymer blend system and, thus, improve its physical
properties.

Nevertheless, compatible polymer blend systems remain immiscible, based on
thermodynamic viewpoints, because most polymer blend systems have relatively
high degrees of polymerization (DPs) and, thus, the favorable entropy terms
of mixing become small relative to those of low-molecular-weight compound
mixtures. Improving miscibility behavior in polymer blends is strongly depen-
dent on the contribution of the enthalpic term; generally, it requires installing
favorable intermolecular interactions (e.g., H-bonding, dipole–dipole, and π–π
interactions) in the system. Many studies of polymer blends in recent years have
involved intermolecular H-bonding. The miscibility of polymer blends; their
self-assembly and supramolecular nanostructures; their nanocomposites; and
low-surface-energy materials have all been investigated in detail in response to
H-bonding strength. This chapter discusses each of these applications.

2.1 Thermodynamic Properties of Polymer Blends

In his book Principles of Polymer Chemistry, Flory recognized that miscible
or single-phase polymer blends were a rare thing in 1953 [2]. Indeed, only
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a few miscible polymer blend systems were reported at that time and it has
becomes obvious, however, that many miscible polymer blend systems have
been prepared from appropriate polymer pairs during the past four decades.
These miscible polymer blend systems are generally those that feature functional
groups capable of forming H-bonds. Painter and Coleman established their
association model (PCAM) to describe these H-bonded miscible polymer
blends; they added an additional term for the formation of H-bond interactions
to modify the classical Flory–Huggins lattice theory for the Gibbs free energy
(Equation 2.1) [3–5]:

ΔGN

RT
=

𝜙1

N1
lnΦ1 +

𝜙2

N2
lnΦ2 + 𝜙1𝜙2𝜒12 +

ΔGH

RT
(2.1)

where 𝜙i is the volume fraction of each polymer, Ni is the DP of each polymer,
𝜒12 is the Flory–Huggins interaction parameter between polymers 1 and 2, and
ΔGH represents the free energy change arising from the formation of H-bonds
in a polymer blend system. Simply speaking, the free energy in this equation is
dependent on two major factors: the number of the H-bonds formed and the
relative interassociation H-bonding strength in the blend system.

To understand the PCAM, we turn our attention to the classical Flory–Huggins
lattice model. Flory independently proposed the first thermodynamic description
of polymer mixture systems [2]:

ΔGN

RT
=

𝜙1

N1
ln𝜙1 +

𝜙2

N2
ln𝜙2 + 𝜙1𝜙2c12 (2.2)

Differentiation of Equation 2.2 leads to the chemical potential:

Δu0
1

RT
= ln𝜙1 +

(
1 − 1

r2

)
𝜙2 + 𝜒12𝜙

2
2 (2.3)

where r2 is the ratio of V 2/V 1 and

𝜒
′
12 =

𝜒12

V1
=

zΔw12r1

kBTV1
(2.4)

where z is the lattice coordination number and Δw12 is the energy change due to
formation of the contact pairs between 1 and 2:

Δw12 = w12 − (w11 + w22)∕2 (2.5)

Here, 𝜒12 is considered to be independent of concentration; it is predicted by
Equation 2.4 to increase with pressure, but decrease with temperature. The term
𝜒

′
12 is purely enthalpic, measured in terms of the difference in solubility para-

meters in the original treatment:

𝜒
′
12 =

(𝛿1 − 𝛿2)2

RT
> 0 (2.6)

Equation 2.2 has two shortcomings: it is not suitable for lower critical solution
temperature (LCST) phase diagrams and it cannot predict polymer miscibility
behavior arising from H-bonding interactions. During the past 30 years, many
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scientists have modified the classical Flory–Huggins lattice theory, including the
statistical thermodynamic analysis of polymer blends by Sanchez and Stone [6],
the binary interaction model of Paul and Merfeld [7], and the association model
of Painter and Coleman [8]. In general, the PCAM can predict the behavior of
H-bonded polymer blends for most systems.

2.2 Association Model Approach

The association model was employed for many years to represent the behavior of
mixtures of simple hydrocarbons and alcohols. As mentioned, Painter and Cole-
man appended an additional term to the classical Flory–Huggins lattice theory
to account for the free energy of formation of H-bonds, as in Equation 2.2. Here,
we use a simple example of the hydroxyl (OH) group to describe the character of
this approach.

A compound containing an OH group (e.g., a phenol derivative) can form
H-bonds from only its one OH functional group. The self-association equilibrium
equation is described as [3]

B1 + B1
K2

←−→B2 (2.7)

Bh + B1
KB

←−→Bh+1 (h > 2) (2.8)

where K2 or KB can be described as

K2 =
ΦB2

2Φ2
B1

(2.9)

KB =
ΦBh+1

ΦBh
ΦB1

h
h + 1

(2.10)

For the competing equilibrium between A and B:

Bh + A1
KA

←−→BhA (2.11)

If the A unit sees no difference in H-bonding to the dimer or h-mers, then we
have

KA =
ΦBhA

ΦBh
ΦA1

hr
h + r

(2.12)

where K2 and KB are self-association equilibrium constants for the H-bonded
dimer and h-multimers of the OH group (B), respectively; KA is the interassocia-
tion equilibrium constant among H-bonded acceptor units (A) with the OH unit
(Bh); r is the segmental molar volume ratio (V A/V B); and ΦBh

and ΦA1 are the vol-
ume fractions of h-mers from OH groups (B) and H-bonded donor groups (A),
respectively. The stoichiometric relationships are obtained simply on the basis of
the consideration of materials balance. The total volume fractions for A and B


