Microbial Fuel Cell - A Bioelectrochemical System that Converts Waste to Watts

von: Debabrata Das

Springer-Verlag, 2017

ISBN: 9783319667935 , 508 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 181,89 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Microbial Fuel Cell - A Bioelectrochemical System that Converts Waste to Watts


 

Foreword

6

Preface

8

Contents

10

Acronyms

13

Chapter 1: Introduction

18

1.1 Background

18

1.2 Basic Principles of Microbial Fuel Cell (MFC)

19

1.3 Components of MFC

21

1.3.1 Anode Materials

21

1.3.2 Types of Separators/Membranes

22

1.3.3 Cathode Materials

24

1.4 MFC Architecture

24

1.5 MFC Performance Indicators

25

1.6 Modelling of Reaction and Transport Processes in MFCs

26

1.7 Applications of MFCs

26

1.7.1 Bioremediation and Wastewater Treatment

27

1.7.2 Removal and Recovery of Heavy Metals

28

1.7.3 Constructed Wasteland Management

28

1.7.4 Water Desalination

29

1.7.5 Biophotovoltaics

29

1.7.6 Biosensors

30

1.7.7 MFC as Alternate Power Tool

30

1.7.8 Biochemical Production via Microbial Electrosynthesis

31

1.8 Scaling Up of MFC

31

1.9 Challenges in MFC and Future Scope

33

1.10 Conclusion

33

References

34

Chapter 2: Principles of Microbial Fuel Cell for the Power Generation

37

2.1 Introduction

37

2.1.1 Fuel Cell and Brief Development of MFC

38

2.2 Basic Principle of MFC

39

2.2.1 Advantages of MFC over Other Bioenergy Processes

39

2.3 Power Generation and Evaluation of MFC Performance

40

2.3.1 Classifications of MFCs

42

2.3.2 Potential Losses in MFC

44

2.3.3 Factors Affecting the Performance of MFC

45

2.3.4 Performance Evaluation for MFC

45

2.3.5 Coulombic Efficiency and Energy Efficiency

46

2.4 Microbes as Catalyst in MFC and Their Various Mode of Exo-cellular Electron Transfer to Electrode

46

2.4.1 Electron Transfer by C-type Cytochromes

47

2.4.2 Microbial Nanowire

50

2.4.3 Electron Shuttles or Mediators

51

2.5 MFC for Wastewater Treatment

52

2.6 Other Applications of MFC

52

2.6.1 MFC as Toxic Sensor and BOD Biosensor

53

2.6.2 Preparation of Metal Nanoparticles

54

2.6.3 Other Bioelectrochemical System Adapted from MFC

54

2.7 Conclusion

55

References

55

Chapter 3: Characteristics of Microbes Involved in Microbial Fuel Cell

58

3.1 Introduction

58

3.2 Electrocigens - Nature and Source

59

3.2.1 Natural Sources for EAB

61

3.2.2 Artificial Sources for EAB

62

3.3 Growth Conditions of EAB

63

3.3.1 pH

63

3.3.2 Temperature

65

3.3.3 Substrate

66

3.3.4 Electrode Material and Membranes

66

3.4 Bioelectrogenesis and Mechanisms of Exocellular Electron Transfer (EET)

67

3.4.1 Mediated Electron Transfer (MET)

69

3.4.2 Direct Electron Transfer (DET)

69

3.5 Factors Affecting EAB Performance in MFC

70

3.5.1 Mass Transfer Limitations

70

3.5.2 Bacterial Metabolism Losses

70

3.5.3 Activation Losses

71

3.5.4 Electron-Quenching Reactions

71

3.6 Strategies for Studying EAB

71

3.6.1 Microbiological Methods

71

3.6.2 Molecular Methods

72

3.6.3 Electrochemical Methods

72

3.7 Microbial Composition of Biocathode

73

3.8 Challenges and Future Prospects

73

3.9 Conclusion

74

References

74

Chapter 4: Microbial Ecology of Anodic Biofilms: From Species Selection to Microbial Interactions

78

4.1 Introduction to Electroactive Biofilms

78

4.2 Breakdown of Fermentation Mix End Products

79

4.2.1 Acetate

79

4.2.2 Formate

82

4.2.3 Lactate

82

4.2.4 Propionate

83

4.2.5 Butyrate

85

4.2.6 Ethanol

85

4.3 Breakdown of Glucose

86

4.3.1 Direct Conversion of Glucose to Current

87

4.3.2 Glucose Fermentation to Mixed End Products

89

4.3.2.1 Glucose to Acetate and Hydrogen

89

4.3.2.2 Glucose to Lactate

89

4.3.2.3 Glucose to Propionate

90

4.3.2.4 Glucose to Succinate, Acetate and Formate

90

4.3.2.5 Glucose to Butyrate

90

4.3.2.6 Glucose to Ethanol

90

4.3.2.7 Pyruvate to Mixed End Products

91

4.3.2.8 Lactate to Mixed End Products

91

4.3.3 Mixed End Products to Current

92

4.4 Microbial Communities for Wastewater Substrates Degradation

93

4.5 Conclusion

94

References

95

Chapter 5: Anodic Electron Transfer Mechanism in Bioelectrochemical Systems

101

5.1 Introduction

101

5.2 Electron Transfer Mechanisms

103

5.2.1 Direct Electron Transfer

103

5.2.2 Mediated Electron Transfer

104

5.2.2.1 MET via Exogenous Mediators

105

5.2.2.2 MET via Endogenous Mediators

106

5.3 Interspecies Electron Transfer Through Conductive Minerals

107

5.4 Factors Influencing Electron Transfer Mechanism

108

5.4.1 Biofilm Integrity

108

5.4.2 Electrodes Structure

109

5.4.3 Catalyzed Electrodes

110

5.4.4 Electrolyte and Electron Carriers

110

5.5 Conclusions

111

References

111

Chapter 6: Development of Suitable Anode Materials for Microbial Fuel Cells

115

6.1 Introduction

115

6.2 Essential Requirements of Anode Materials

115

6.2.1 Surface Area and Porosity

115

6.2.2 Fouling and Poisoning

116

6.2.3 Electronic Conductivity

116

6.2.4 Biocompatibility

117

6.2.5 Stability and Long Durability

117

6.2.6 Electrode Cost and Availability

117

6.3 Anode Materials Employed in MFCs

118

6.3.1 Carbonaceous Electrodes

118

6.3.1.1 Types of Carbonaceous Anode

118

6.3.1.2 Plane or 2D Carbonaceous Anodes

119

6.3.1.3 3D Carbonaceous Anodes

121

6.3.2 Non-carbonaceous Electrodes

123

6.3.2.1 Noble Metal Materials

123

6.3.2.2 Non-noble Metal Materials

124

6.3.2.3 3D and Composites Metal-Based Electrodes

124

6.4 Surface Treatment

125

6.4.1 Heat Treatment

125

6.4.1.1 Treatment of Anode Materials

127

6.4.1.2 Chemical Treatment

127

Ammonia/Acid Treatment

127

Electrochemical Oxidation

128

6.4.2 Advanced Nanostructure Modification of Anodes

129

6.4.2.1 Modification of Anodes by Carbon Nanotubes (CNT) and Its Composites

129

6.4.2.2 Modification of Anodes by Graphene and Its Composites

131

6.4.2.3 Modification of Anodes by Conductive Polymer and Its Composites

132

6.5 Challenge and Outlook

133

6.6 Conclusion

133

References

134

Chapter 7: Performances of Separator and Membraneless Microbial Fuel Cell

139

7.1 Introduction

139

7.2 Parameters Used in MFC Performance

141

7.2.1 Proton Transport Mechanism in a PEM

143

7.3 Advantages and Disadvantages of Separator and Separatorless MFC

143

7.4 Type of Separators and Their Performance in MFC

144

7.4.1 Ion-Exchange Membranes

144

7.4.2 Salt Bridge

145

7.4.3 Porous Membrane

146

7.4.4 Polymer Electrolyte Membrane and Composite Membranes

147

7.5 Separatorless MFC

149

7.6 Current Status

150

7.7 Conclusion

151

References

151

Chapter 8: Role of Cathode Catalyst in Microbial Fuel Cell

155

8.1 Introduction

155

8.2 Non-oxygen Terminal Electron Acceptors

157

8.3 Oxygen Reduction Reaction (ORR) at Cathode: Fundamentals

158

8.3.1 Evaluation of ORR Catalysts: Figure of Merits

160

8.4 Cathode Catalysts

162

8.4.1 Pt and Pt-based ORR Catalysts

163

8.4.2 Pt-free ORR Catalysts in MFC

165

8.4.2.1 Metals and Multimetallics

165

8.4.2.2 Metal Oxide-Based ORR Catalysts

166

8.4.2.3 Metal Macrocycles-Based ORR Catalysts

167

8.4.2.4 Carbon-Based ORR Catalysts

169

8.4.2.5 Metal Carbides as ORR Catalysts

170

8.4.2.6 Electronically Conductive Polymer Catalysts

171

8.4.2.7 Biocatalysts for Cathodic Reduction

172

8.5 Conclusions

173

References

173

Chapter 9: Role of Biocathodes in Bioelectrochemical Systems

178

9.1 Introduction

178

9.2 BES Technology Utilizing Biocathodes

179

9.3 Electron Acceptors and Microorganisms

180

9.4 Biocathode Materials

181

9.4.1 General Material Characteristics

182

9.4.1.1 Biocompatibility and Surface Roughness

182

9.4.1.2 Surface Area and Porosity

182

9.4.1.3 Conductivity

182

9.4.1.4 Hydrophobicity

183

9.5 Biofilm Formation

183

9.5.1 Biofilm Architecture

183

9.6 Electron Transfer

184

9.6.1 Aerobic and Anaerobic Bacterial Electron Transport Chains

184

9.6.2 Electrode-Microbe Electron Transfer Mechanisms

185

9.6.2.1 Direct Electron Transfer (DET)

185

9.6.2.2 Indirect Electron Transfer (IDET)

186

9.6.2.3 Proteins Affiliated with Extracellular Electron Transfer

186

9.7 Microbial Characterization Methods

187

9.7.1 Biofilm Characterization

187

9.7.2 Microorganism Detection

187

9.7.3 Composition and Characterization of Microbial Communities

188

9.7.4 Analysis of Functional Genes and Activity of Microbes

189

9.7.5 Polyphasic Taxonomical Approach

189

9.7.6 Microscopic Methods

190

9.7.7 Spectroscopic Methods

191

9.7.8 Nuclear Magnetic Resonance Imaging

191

9.7.9 Flow Cytometry

191

9.8 Conclusions

192

References

192

Chapter 10: Physicochemical Parameters Governing Microbial Fuel Cell Performance

201

10.1 Introduction

201

10.2 Anode Electrode for MFC

201

10.2.1 Plain Anode Materials

201

10.2.2 Surface Modifications of Anode Electrode

203

10.3 Cathode Electrode

204

10.3.1 Cathode Electrode with Catalysts

204

10.3.2 Cathode Electrode Without Catalysts

205

10.4 Membranes/Separators Tested in MFC

205

10.4.1 Ion Exchange Membrane

205

10.4.2 Size Selective Separators

206

10.5 Reactor Configurations

207

10.6 Effect of Temperature on MFC Performance

209

10.7 Electrolyte pH in Governing MFC Performances

209

10.8 Electrolyte Conductivity

211

10.9 Oxidants in an MFC Cathode

212

10.10 Substrates (Fuels) in the MFC Anode Chamber

215

10.11 Conclusions

216

References

216

Chapter 11: Reactor Design for Bioelectrochemical Systems

221

11.1 Introduction

221

11.2 Components of BES

222

11.2.1 Anode Materials

222

11.2.1.1 Nanostructured Carbon-Based Electrodes

222

11.2.1.2 Carbon Nanotubes

224

11.2.1.3 Graphene

225

11.2.1.4 Conductive Polymers

226

11.2.1.5 Metal Nanoparticles

227

11.2.2 Cathode Materials

229

11.2.2.1 Chemical Cathodes

229

11.2.2.2 Biocathodes

230

11.2.3 Membranes

230

11.2.3.1 Cation Exchange Membranes

231

11.2.3.2 Anion Exchange Membranes

231

11.3 Bioelectrochemical Cell Designs

231

11.3.1 Dual Chamber

231

11.3.2 Single Chamber

233

11.3.3 Stack Designs

233

11.4 Future Perspectives and Conclusions

233

References

236

Chapter 12: Microfluidic Microbial Fuel Cell: On-chip Automated and Robust Method to Generate Energy

240

12.1 Introduction

240

12.2 Microfluidics - Basic Principles Pertaining to MFC

241

12.2.1 Summary of Principles

241

12.2.2 Amenability to Integration

242

12.2.3 Principle to Develop Membraneless MMFC

243

12.3 Membraned Microfluidic MFC (M+MMFC)

243

12.3.1 Diverse Membraned Microfluidic MFC (M+MMFC)

243

12.3.1.1 Conventional Photolithography (Chen et al. 2011; Dvila et al. 2011; Mu et al. 2006)

244

12.3.1.2 Soft Lithography (Choi and Chae 2013; Li et al. 2011; Qian et al. 2009, 2011; Siu and Chiao 2008)

245

12.3.1.3 Paper-Based Devices (Choi et al. 2015; Fraiwan and Choi 2014; Fraiwan et al. 2013; Hashemi et al. 2016)

246

12.3.1.4 Laser Micromachining

248

12.3.2 Challenges in Conventional Microfluidic MFCs (M+MMFC)

248

12.3.2.1 High Internal Resistance

248

12.3.2.2 Low Energy Density Output

248

12.3.2.3 Oxygen Penetration

248

12.4 Membraneless Microfluidic MFC (M-MMFC)

249

12.4.1 Key Membraneless Microfluidic MFC (M-MMFC) and Their Comparison

250

12.4.2 Salient Features of M-MMFC

252

12.4.2.1 Membraneless

252

12.4.2.2 Higher Output Power Density/Current Density

252

12.4.2.3 Relatively Shorter Response Time

252

12.4.3 Challenges in M-MMFC

253

12.4.3.1 Ensuring the Required Flow Environment

253

12.4.3.2 Smart Integration of Various Components of M-MMFC

253

12.5 Future Opportunities

253

12.5.1 Electricity Generation

253

12.5.2 In Vivo Operation

253

12.5.3 Input Power Requirement

254

12.5.4 Other Applications

254

12.6 Conclusion

254

References

255

Chapter 13: Diagnostic Tools for the Assessment of MFC

259

13.1 Introduction

259

13.2 Reporting Data Using Typical Performance Indicators

260

13.2.1 Open Circuit Voltage (OCV)

260

13.2.2 Half-Cell Potential

260

13.2.3 Current Density

260

13.2.4 Power Density

261

13.2.5 Columbic Efficiency

261

13.2.5.1 Batch or Fed-Batch Mode of Operation

262

13.2.5.2 Continuous Mode of Operation

262

13.2.6 Energy Efficiency

262

13.3 Performance Evaluation via Electro-chemical Tools

263

13.3.1 Polarization

263

13.3.2 Current Interruption (CI)

264

13.3.3 Voltammetry Techniques

265

13.3.3.1 Linear Sweep Voltammetry (LSV)

266

13.3.3.2 Cyclic Voltammetry (CV)

267

13.3.3.3 Differential Pulse Voltammetry (DPV)

269

13.3.3.4 Chronoamperometry (CA)

269

13.3.4 Butler-Volmer Analysis and Tafel Plots

271

13.3.5 Electrochemical Impedance Spectroscopy (EIS) Analysis

271

13.4 Material Characterization Methods

272

13.4.1 Scanning Electron Microscopy (SEM)

272

13.4.2 Transmission Electron Microscopy (TEM)

273

13.4.3 X-Ray Diffraction (XRD)

274

13.4.4 BET Surface Area Measurements

274

13.4.5 Other Methods

274

13.5 Techniques for Microbial Community Analysis

275

13.5.1 DGGE

275

13.5.2 ARDRA

275

13.5.3 Pyrosequencing

276

13.5.4 Other Molecular Techniques

276

13.6 Waste and Wastewater Analysis

277

13.7 Conclusions

277

References

277

Chapter 14: Modelling of Reaction and Transport in Microbial Fuel Cells

279

14.1 Introduction

279

14.2 Principle of an MFC

280

14.3 Classification of the Models

281

14.4 Overall Models

282

14.5 Models Pertaining to Anode-Bacterial Interactions

283

14.5.1 Background Current and Modelling of Endogenous Metabolism

285

14.6 Models Pertaining to Membrane/Separator

289

14.7 Models Pertaining to Oxygen Reduction Reaction (ORR) Kinetics at Cathode

291

14.8 Conclusion

292

References

293

Chapter 15: Bioremediation and Power Generation from Organic Wastes Using Microbial Fuel Cell

294

15.1 Introduction

294

15.2 Basic Principles of Power Generation from Organic Wastes in MFC

295

15.3 Electrode Mechanisms

296

15.3.1 Reactions at Anode

296

15.3.2 Reactions at Cathode

297

15.4 MFC Configurations

298

15.5 Microbial Remediation Using MFC-Based Technologies

299

15.5.1 MFC-Assisted Biodegradation of Azo Dyes

300

15.5.2 Bioremediation of Hydrocarbons and Their Derivatives

303

15.5.3 Removal of Heavy Metals

304

15.5.4 Other Pollutants

305

15.6 Organic Wastes and Wastewater as Potential Feedstocks for MFCs

306

15.6.1 Solid Residual Wastes

306

15.6.2 Organic Wastewater

308

15.7 Challenges

310

15.8 Conclusions and Future Prospects

311

References

311

Chapter 16: Removal and Recovery of Metals by Using Bio-electrochemical System

316

16.1 Introduction

316

16.2 Principles of Bioelectrochemical Systems (BESs)

316

16.3 Metals in the Environment

318

16.4 Bio-electrochemical Metal Removal and Recovery

319

16.4.1 Arsenic

319

16.4.2 Cadmium (Cd)

319

16.4.3 Chromium (Cr)

321

16.4.4 Cobalt (Co)

324

16.4.5 Copper (Cu)

324

16.4.6 Mercury (Hg)

326

16.4.7 Gold (Au)

328

16.4.8 Nickel (Ni)

328

16.4.9 Selenium (Se)

332

16.4.10 Silver (Ag)

333

16.4.11 Vanadium (V)

335

16.5 Conclusions

338

References

338

Chapter 17: Sediment Microbial Fuel Cell and Constructed Wetland Assisted with It: Challenges and Future Prospects

343

17.1 Introduction

343

17.2 Fundamentals of SMFCs and CW-MFCs

345

17.3 Factors Affecting the Performance of SMFCs and CW-MFCs

346

17.3.1 Electrode Materials

346

17.3.2 Electrode Spacing and External Resistance

348

17.3.3 Effect of Catalysts and Mediators

348

17.3.4 Effect of pH, Dissolved Oxygen and Temperature

350

17.3.5 Plants

351

17.3.6 Operating Conditions

353

17.4 Electricity Generation as a Function of Wastewater Treatment

353

17.5 Scaling Up of SMFCs and Operating Wireless Sensors

354

17.6 Conclusion

355

References

356

Chapter 18: Fundamentals of Microbial Desalination Cell

361

18.1 Introduction

361

18.2 Ion Exchange Membrane (IEM) Based MDC

362

18.2.1 Reactor Design

362

18.2.2 Junction Potential and Water Transport

366

18.3 MDC Performance

368

18.3.1 Salinity Removal

368

18.3.2 Maximum Current vs. Maximum Power

368

18.3.3 Current Efficiency

369

18.3.4 Coulombic Efficiency

369

18.3.5 COD Removal

370

18.3.6 Effects of Electrolyte pH

370

18.3.7 Salinity Effects on Exoelectrogenic Bacteria

371

18.3.8 Cathode Reactions: O2 Reduction vs. H2 Evolution

371

18.4 Types of Microbial Desalination Cells (MDCs)

372

18.4.1 Osmotic MDCs

372

18.4.2 Bipolar Membrane MDCs

372

18.4.3 Capacitive Microbial Desalination Cell

374

18.5 Challenges and Perspective

375

18.5.1 Control of pH

375

18.5.2 Improving Performance of Stacked MDCs

375

18.5.3 IEM Integrity Under High Microbial Activity

376

18.5.4 Water Safety

377

18.6 Conclusion

377

References

377

Chapter 19: Biophotovoltaics: Conversion of Light Energy to Bioelectricity Through Photosynthetic Microbial Fuel Cell Technolo...

380

19.1 Introduction

380

19.2 Mechanism of Development of Potential Gradient in Biological System

381

19.3 Light Harvesting Technologies for Bioelectricity Generation

382

19.3.1 Chemical Based

382

19.3.2 Biological Based

383

19.3.2.1 Anoxygenic Photosynthesis at Anode

383

19.3.2.2 Photosynthetic at Anode with Artificial Mediators Biological Photovoltaics

383

19.3.2.3 Oxygenic Photosynthesis at Anode

384

19.3.2.4 Oxygenic Photosynthesis at Cathode

386

19.3.2.5 Plant MFC (Synergism Between Mixed Heterotrophic Bacteria and Plant)

387

19.3.3 Ecological Engineered System (EES): MFC to Wetland System

387

19.3.4 Light Harvesting Proteins for Photovoltaic and Photoelectrochemical Devices

388

19.4 Applications

389

19.4.1 Wastewater Treatment

390

19.4.2 Powering Underwater Monitoring Devices

390

19.4.3 BOD Sensing

390

19.4.4 Biohydrogen Production in PhFC

391

19.5 Conclusion

391

References

391

Chapter 20: Application of Microbial Fuel Cell as a Biosensor

395

20.1 Introduction

395

20.2 Microbial Biosensors

395

20.3 Principle of MFC as a Biosensor

397

20.4 Advantages of MFC as a Sensor

399

20.5 BOD and Its Importance

399

20.6 Methods of Assessing BOD

400

20.7 Application of MFC as a BOD Sensor

400

20.7.1 MFC as a BOD Biosensor-State of Art

401

20.7.2 Challenges of MFC-Based BOD Biosensors

404

20.8 Upcoming Applications of MFC in the Field of Sensing

405

20.8.1 Screening of Electroactive Microbes

405

20.8.2 Toxicity Sensing

406

20.8.3 VFA Sensing

406

20.9 Conclusion and Future Perspectives

406

References

407

Chapter 21: Microbial Fuel Cell as Alternate Power Tool: Potential and Challenges

409

21.1 Introduction

409

21.2 MFCs as Alternative Power Sources

412

21.2.1 MFCs Powering Remote Sensors

412

21.2.2 MFCs for Robotics

414

21.2.3 Paper-Based MFC Devices

416

21.2.4 Pee Power Urinal Field Trials

418

21.2.5 MFCs Powering Low Power Density Devices

419

21.3 Factors Constraining Energy Output of MFCs

419

21.4 Energy Harvest in MFC

421

21.5 Conclusions

422

References

423

Chapter 22: Microbially Mediated Electrosynthesis Processes

426

22.1 Microbial Electrosynthesis for Bioelectrochemical Processes

426

22.2 Factors Affecting the Performance of BES

428

22.2.1 Electrochemical Parameters

429

22.2.1.1 Activation Polarization

429

22.2.1.2 Ohmic Polarization

429

22.2.1.3 Voltage Reversal

430

22.2.1.4 Applied Potential

430

22.2.2 Physicochemical Parameters

430

22.2.2.1 Substrate Availability

431

22.2.2.2 Salinity

431

22.2.2.3 Concentration Polarization

431

22.2.3 Operational Parameters

432

22.2.3.1 Mediators

432

22.2.3.2 pH Splitting

433

22.2.3.3 Other Operational Consideration

433

22.2.4 Engineering Parameters

434

22.2.4.1 Reactor Configuration

434

22.2.4.2 Internal Currents

435

22.2.4.3 Membranes

435

22.2.4.4 State-of-the-Art Electrode Materials

436

22.2.4.5 Tubings and Compartments

436

22.2.5 Microbial Parameters

437

22.2.6 Economic Parameters

437

22.3 Biocathode Development

438

22.4 Advantages and Application of Bioelectrochemical Conversions

440

22.5 Conclusions

442

References

443

Chapter 23: Recent Progress Towards Scaling Up of MFCs

448

23.1 Genesis and Advancement in MFC Research

448

23.2 Bottleneck in MFC Research

450

23.3 Scaling Up of MFC

451

23.4 Hybrid Approach of MFC for Wastewater Treatment

453

23.5 Life Cycle Assessment of MFC

455

23.6 Current Challenges and Potential Opportunities

456

23.7 MFC: Outlook and Future Perspectives

457

23.8 Conclusion

458

References

459

Chapter 24: Scaling Up of MFCs: Challenges and Case Studies

463

24.1 Introduction

463

24.2 Limitations in Large Scale Applicationof MFCs

464

24.3 Electrochemical Limitations: Design

466

24.3.1 Electrodes

466

24.3.2 Reactor Vessel Design

466

24.3.3 Electrical Connectivity

467

24.4 Operational Limitations

467

24.4.1 Start-Up

467

24.4.2 Electrolyte

468

24.4.2.1 Chemical Composition

468

24.4.2.2 Substrate Loading

469

24.5 Economic Limitations

470

24.6 MFCs Toward Commercial Applications: Case Studies

471

24.6.1 Bioelectro MET

471

24.6.2 Value from Urine

474

24.6.3 EcoBots

475

24.6.4 Pee Power Urinal

476

24.7 Possible Solutions to Overcomethe Limitations

477

24.7.1 Electrode Spacing and Specific Surface Area

477

24.7.2 Electrolyte Flow Dynamics

478

24.7.3 Minimizing Fabrication Defects

480

24.8 Conclusions and Future Perspectives

480

References

481

Chapter 25: Challenges in Microbial Fuel Cell and Future Scope

486

25.1 Introduction

486

25.2 Metabolic Reactions Intricate in Bioelectricity Generation from Exoelectrogens

487

25.3 MFC Applications

490

25.4 Factors Governing MFC Performance

490

25.4.1 Biocatalyst

491

25.4.2 Substrate

491

25.4.3 Substrate/COD Concentration

491

25.4.4 Feed pH

492

25.5 Bottlenecks of MFC

492

25.5.1 Polarization Losses

492

25.5.2 Activation Losses (AL)

493

25.5.3 Concentration Polarization (CP)

494

25.5.4 Ohmic Losses (OL)

494

25.5.5 Microbial Interaction with the Electrode Surface

495

25.5.6 Choice of Anode Biocatalyst

495

25.5.7 Proton (H+) Mass Transfer

496

25.5.8 O2 Reduction by the Cathode

497

25.5.9 Electron Acceptors Other Than O2

497

25.6 MFC as a Wastewater Treatment System

497

25.7 Future Scope

498

25.8 Conclusion

498

References

499

Index

503