Analysis of Engineering Structures and Material Behavior

Analysis of Engineering Structures and Material Behavior

von: Josip Brnic

Wiley, 2018

ISBN: 9781119329107 , 496 Seiten

Format: PDF

Kopierschutz: DRM

Mac OSX,Windows PC Apple iPad, Android Tablet PC's

Preis: 105,99 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Analysis of Engineering Structures and Material Behavior


 

Title Page

5

Copyright

6

Contents

9

Frequently Used Symbols and the Meaning of Symbols

17

Principal SI Units and the US Equivalents

25

SI Prefixes, Basic Units, Physical Constants, the Greek Alphabet

27

Important Notice Before Reading the Book

29

Preface

31

About the Author

33

Acknowledgements

35

Chapter 1 Introduction

37

1.1 The Task of Design and Manufacture

37

1.2 Factors that Influence the Design of Engineering Structures

37

1.3 The Importance of Optimization in the Process of Design and the Selection of Structural Materials

39

1.4 Commonly Observed Failure Modes in Engineering Practice

40

1.5 Structures and the Analysis of Structures

41

References

41

Chapter 2 Stress

43

2.1 Definition of Average Stress and Stress at a Point

43

2.2 Stress Components and Equilibrium Equations

44

2.2.1 Stress Components

44

2.2.2 Equilibrium Equations

45

2.3 Stress Tensor

46

2.3.1 Mean and Deviatoric Stress Tensors

46

2.4 States of Stress

48

2.4.1 Uniaxial State of Stress

48

2.4.2 Two-dimensional State of Stress

50

2.4.3 Three-dimensional State of Stress

54

2.4.3.1 Stress on an Arbitrary Plane

56

2.4.3.2 Stress on an Octahedral Plane

57

2.4.3.3 Principal Stresses and Stress Invariants

58

2.5 Transformation of Stress Components

60

References

64

Chapter 3 Strain

65

3.1 Definition of Strain

65

3.1.1 Some Properties of Materials Associated with Strain

66

3.1.1.1 Poisson´s Ratio

66

3.1.1.2 Volumetric Strain

66

3.1.1.3 Bulk Modulus

67

3.1.1.4 Modulus of Elasticity

68

3.1.1.5 Shear Modulus (Modulus of Rigidity)

68

3.2 Strain–Displacement Equations

69

3.3 Strain Tensors

71

3.3.1 Small Strain Tensor

71

3.3.2 Finite Strain Tensor

74

3.3.3 Mean and Deviatoric Strain Tensors

76

3.3.4 Principal Strains and Strain Invariants

77

3.3.4.1 Strain Tensor

77

3.3.4.2 Deviatoric Strain Tensor

78

3.4 Transformation of Strain Components

79

3.4.1 Mohr´s Circle

80

3.5 Strain Measurement

80

References

84

Chapter 4 Mechanical Testing of Materials

87

4.1 Material Properties

87

4.2 Types of Material Testing

88

4.3 Test Methods Related to Mechanical Properties

88

4.4 Testing Machines and Specimens

88

4.4.1 Static Tensile Testing Machine and Specimens

88

4.4.2 Impact Testing Machine and Specimens

90

4.4.3 Hardness Testing Machine

90

4.4.4 Fatigue Testing Machines

92

4.5 Test Results

92

4.5.1 Static Tensile Test Results

92

4.5.1.1 Engineering Stress–Strain Diagram

92

4.5.1.2 Creep Diagram/Curve

98

4.5.1.3 Relaxation Diagram/Curve

98

4.5.2 Dynamic Test Results

99

4.5.2.1 Tensile, Flexural and Torsional Test Results

99

4.5.2.2 Toughness Test Results

100

4.5.2.3 Fracture Toughness Test Results

100

References

100

Chapter 5 Material Behavior and Yield Criteria

103

5.1 Elastic and Inelastic Responses of a Solid

103

5.2 Yield Criteria

103

5.2.1 Ductile Materials

107

5.2.1.1 Maximum Shear Stress Criterion (Tresca Criterion)

107

5.2.1.2 Distortional Energy Density Criterion (von Mises Criterion)

110

5.2.2 Brittle Materials

112

5.2.2.1 Maximum Normal Stress Criterion

112

5.2.2.2 Maximum Normal Strain Criterion

112

References

114

Chapter 6 Loads Imposed on Engineering Elements

115

6.1 Axial Loading

115

6.1.1 Normal Stress

117

6.1.2 The Principal Stress

118

6.2 Torsion

121

6.2.1 Elastic Torsion – Shear Stress and Strain Analysis

122

6.2.1.1 Prismatic Bars: Circular Cross-section

122

6.2.1.2 Prismatic Bars: Noncircular Cross-section

131

6.2.1.3 Thin-walled Structures

132

6.2.2 Warping (Distortion) of a Cross-section

137

6.2.3 Inelastic Torsion and Residual Stress

139

6.2.3.1 Residual Stress

141

6.3 Bending

145

6.3.1 Beam Supports, Types of Beams, Types of Loads

145

6.3.2 Internal Forces – Bending Moments (Mf), Shear Force (Q), Distributed Load (q)

147

6.3.3 Principal Moments of Inertia of an Area (I1, I2) and Extreme Values of Product of Inertia (Ixy) of an Area

148

6.3.3.1 Axes Parallel to the Centroidal Axes

150

6.3.3.2 Rotation of the Coordinate Axes at the Observed Point (Rotated Axes)

151

6.3.4 Symmetrical Bending

152

6.3.4.1 Pure Bending

152

6.3.4.2 Nonuniform Bending

158

6.3.5 Nonsymmetrical Bending

162

6.3.6 Loading of Thin-walled Engineering Elements; Shear Center

169

6.3.6.1 Shear Center

170

6.3.7 Beam Deflections

172

6.3.8 Bending of Curved Elements

176

6.4 Stability of Columns

185

6.4.1 Critical Buckling Force in the Elastic Range

186

6.4.1.1 Pin-ended Columns

186

6.4.1.2 Columns with Other End Conditions

189

6.4.2 Critical Buckling Stress in the Elastic Range

191

6.4.3.1 Local Buckling of the Column

193

6.5 Eccentric Axial Loads

195

6.5.1 Eccentric Axial Load Acting in a Plane of Symmetry

195

6.5.2 General Case of an Eccentric Axial Load

197

References

200

Chapter 7 Relationships Between Stress and Strain

203

7.1 Fundamental Considerations

203

7.2 Anisotropic Materials

205

7.3 Isotropic Materials

207

7.3.1 Determination of Hooke´s Law – Method of Superposition

211

7.3.2 Engineering Constants of Elasticity

214

7.4 Orthotropic Materials

216

7.5 Linear Stress–Strain–Temperature Relations for Isotropic Materials

220

References

222

Chapter 8 Rheological Models

225

8.1 Introduction

225

8.2 Time-independent Behavior Modeling

226

8.2.1 Elastic Deformation Modeling

226

8.2.1.1 Hooke´s Element (H Model)

226

8.2.2 Deformation Modeling after the Elastic Limit

228

8.2.2.1 Saint Venant Element (SV Model)

228

8.2.2.2 Saint Venant Element–Spring/(SV–Spring)

228

8.2.2.3 Saint Venant Element | Spring-Spring/(SV | Spring-Spring)

228

8.3 Time-dependent Behavior Modeling

230

8.3.1 Newton Element (N Model): Linear Viscous Dashpot Element

231

8.3.2 Maxwell Model (M=H-N)

231

8.3.2.1 Generalized Maxwell Model

233

8.3.3 Voigt-Kelvin Model (K=H | N)

234

8.3.3.1 Generalized Voigt–Kelvin Model

235

8.3.4 Standard Linear Solid Model (SLS)

236

8.3.5 Voigt–Kelvin-Hooke´s Model (K-H)

237

8.3.6 Burgers´ Model

238

8.4 Differential Form of Constitutive Equations

241

References

243

Chapter 9 Creep in Metallic Materials

245

9.1 Introduction

245

9.2 Plastic Deformation – General

247

9.2.1 Slip

247

9.2.2 Cleavage

248

9.2.3 Twinning

249

9.2.4 Grain Boundary Sliding

249

9.2.5 Void Coalescence

250

9.3 The Creep Phenomenon and Its Geometrical Representation

250

9.3.1 Creep Deformation Maps and Fracture Mechanism Maps

252

9.3.1.1 Creep Deformation Mechanisms

252

9.3.1.2 Fracture Micromechanisms and Macromechanisms

256

9.3.1.3 Creep Fracture Mechanisms

257

9.3.2 Short-time Uniaxial Creep Tests, Creep Modeling and Microstructure Analysis

259

9.3.2.1 Short-time Uniaxial Creep Tests

259

9.3.2.2 Creep Modeling

261

9.3.2.3 Microstructure Analysis – Basic

263

9.3.3 Long-term Creep Behavior Prediction Based on the Short-time Creep Process

264

9.3.3.1 Extrapolation Methods

266

9.3.3.2 Time–Temperature Parameters

267

9.3.4 Multiaxial Creep

268

9.4 Relaxation Phenomenon and Modeling

270

References

272

Chapter 10 Fracture Mechanics

275

10.1 Introduction

275

10.2 Fracture Classification

276

10.3 Fatigue Phenomenon

278

10.3.1 Known Starting Points

278

10.3.2 Stress versus Life Curves (?–N/S–N), Endurance Limit

278

10.4 Linear Elastic Fracture Mechanics (LEFM)

284

10.4.1 Basic Consideration

284

10.4.2 Crack Opening Modes

287

10.4.2.1 Stress Intensity Factor (K/SIF)

288

10.4.2.2 Plastic Zone Size around the Crack Tip

296

10.4.2.3 Plastic Zone Shape around the Crack Tip

299

10.5 Elastic–Plastic Fracture Mechanics (EPFM)

302

10.5.1 The J Integral

303

10.6 Experimental Determination of Fracture Toughness

306

10.6.1 Test Specimens: Shapes, Dimensions, Orientations and Pre-cracking

307

10.6.1.1 Shapes and Dimensions of the Specimens

307

10.6.1.2 Orientation of a Specimen Made from Base Material

308

10.6.1.3 Fatigue Pre-cracking

310

10.6.2 Fracture Toughness, KIc and the K–R Curve

310

10.6.2.1 R-curve (K–R Curve)

310

10.6.2.2 Plane Strain Fracture Toughness (KIc) Testing

313

10.6.3 Fracture Toughness JIc and the J–R Curve

315

10.6.3.1 R-curve (J–R Curve)

315

10.6.3.2 Fracture Toughness (JIc) Determination/Testing

316

10.7 Charpy Impact Energy Testing

320

10.8 Crack Propagation

324

10.8.1 Introduction

324

10.8.2 Fatigue Crack Growth

325

10.8.2.1 The Paris Equation

330

10.8.2.2 The Walker Equation

332

10.8.2.3 The Forman Equation

333

10.8.2.4 The Forman–Newman–de Koning Equation

333

10.8.3 Creep Crack Growth

333

10.8.4 Life Assessment of Engineering Components

334

10.8.4.1 Constant Amplitude Loading

334

10.8.4.2 Variable Amplitude Loading

334

10.8.5 Crack Closure

335

10.8.5.1 Elber Crack Closure Phenomenon

335

10.8.6 A Brief Review of Testing of Unnotched, Axially Loaded Specimens

337

References

345

Chapter 11 The Finite Element Method and Applications

349

11.1 The Finite Element Method (FEM) in the Analysis of Engineering Problems

349

11.1.1 Applications of FEM

349

11.1.2 The Advantages of Using the FEM

350

11.1.3 A Brief Overview of the Historical Development of the FEM

350

11.2 Linear Analysis of Structural Behavior

351

11.2.1 Formulations of Equilibrium Equations

352

11.2.1.1 Variational Formulation of the Finite Element (Equilibrium) Equation

354

11.2.2 Structures

370

11.2.3 Finite Elements

370

11.2.4 Shape Functions – Cartesian and Natural (Dimensionless) Coordinate Systems

370

11.2.4.1 Cartesian Coordinate System

371

11.2.4.2 Natural (Dimensionless) Coordinate System

377

11.2.5 One-dimensional Finite Elements

383

11.2.5.1 Basic 1-D Finite Elements

383

11.2.5.2 Finite Elements of Higher Order

395

11.2.6 Two-dimensional Finite Elements

399

11.2.6.1 Basic 2-D Finite Elements

403

11.2.6.2 Finite Elements of Higher Order

412

11.2.6.3 Transformation Procedure for the Finite Element Equation

414

11.2.7 Three-dimensional Finite Elements

415

11.2.7.1 Basic 3-D Finite Elements

417

11.2.7.2 Finite Elements of Higher Order

424

11.2.8 Isoparametric Finite Elements

429

11.2.8.1 Introduction

429

11.2.8.2 Isoparametric Representation

431

11.2.9 Bending of Elastic Flat Plates

434

11.2.9.1 Deformation Theories for Elastic Plates

434

11.2.9.2 Finite Elements Based on Kirchhoff Plate Theory

443

11.2.10 Basics of Dynamic Behavior of Elastic Structures

446

11.2.10.1 Mass Matrix of the Finite Element

449

11.2.10.2 Free, Undamped Vibrations of Constructions – Eigenvalues

450

11.3 A Brief Introduction to Nonlinear Analysis of Structural Behavior

457

11.4 Metal-forming Processes – Brief Overview

458

11.4.1 Introduction

458

11.4.2 Classification, Variables and Characteristics of Metal-forming Processes

459

11.4.2.1 Comparison of Hot and Cold Working Processes in Terms of Working Temperature, Shaping Force and Achieved Material ...

464

11.4.3 Basic Settings Related to the Theory of Metal-forming Processes

465

11.4.3.1 Strain-rate Tensor and Data Relating to Yield Criteria

466

11.4.3.2 Virtual Work-rate Principle

469

11.4.3.3 The Prandtl–Reuss Equations

469

11.4.3.4 The Governing Equations of Plastic Deformation

473

11.4.3.5 Shape Functions

473

11.4.3.6 Strain-rate Matrix

474

11.5 The Application of the Finite Element Method in Structural Analysis

474

11.5.1 One-dimensional Finite Elements: Finite Element Analysis of Truss Structure Deformation

475

11.5.2 Two-dimensional Finite Elements: J Integral Calculation

479

11.5.3 Special Two-dimensional Finite Elements in Shear Stress Analysis

483

11.5.3.1 Introduction

483

11.5.3.2 Application of General Quadrilateral Finite Elements

486

References

487

Index

489

EULA

499