The Role of Topology in Materials

von: Sanju Gupta, Avadh Saxena

Springer-Verlag, 2018

ISBN: 9783319765969 , 307 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 106,99 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

The Role of Topology in Materials


 

Foreword

6

Preface

7

Contents

10

Contributors

16

Introductory

18

1 Importance of Topology in Materials Science

19

1.1 Introduction

19

1.2 Essentials of Topology

20

1.2.1 Genus and Euler Characteristics

20

1.2.2 Network Topology

20

1.2.3 Geometry-Topology Interrelationship

21

1.3 Topological Taxonomy of Functional Materials

21

1.3.1 Nanocarbons

21

1.3.2 Soft and Polymeric Materials

26

1.3.3 Minimal Periodic Surfaces

28

1.4 Topological Phases in Condensed Matter

30

1.4.1 Real-Space Topological Materials

31

1.4.2 Dirac Materials

31

1.4.3 Topological Insulators and Topological Superconductors

33

1.4.4 Weyl Semimetals

34

1.4.5 Other Topological Materials

35

1.5 Metrology and Techniques

39

1.5.1 High-Resolution Electron Microscopy

39

1.5.2 Nonlinear Optical Imaging

39

1.5.3 X-Ray Tomography and Electron Holography

39

1.5.4 X-Ray and Neutron Scattering

40

1.5.5 Elasticity and Deformation Energy Characterization

40

1.5.6 Topological Correlators and Other Metrics

42

1.6 Computational Topology of Materials

42

1.6.1 Topological Databases and Visualizing Topology

43

1.6.2 Miscellaneous Topics

43

1.7 Conclusion

45

References

46

2 Topology and Geometry in Condensed Matter

50

2.1 Topology

50

2.1.1 Introduction

50

2.1.2 Classification of Vector Fields with Homogeneous Boundary Conditions

52

2.1.3 Classification of Defects in Vector Fields (Mainly Spin Fields)

53

2.1.4 Defects and Homogeneous Boundary Conditions

53

2.2 Geometry

54

2.2.1 Energy

54

2.2.2 Geometry with Intrinsic Length: The Cylinder

55

2.2.3 Geometry with Intrinsic Length: Plane with a Disc Missing

57

2.2.4 Interaction Between Geometry and Physical Field

59

2.2.5 Chirality of 1d Spin Configurations

60

2.3 Quantum Potential, Thin Tubes, Knots

63

2.4 Conclusions

65

References

65

Condensed Matter Materials Physics

66

3 Topology-Induced Geometry and Properties of Carbon Nanomaterials

67

3.1 Introduction

67

3.1.1 Carbon as a Building Block

67

3.1.2 Defect in sp2 Nanocarbon

68

3.2 Topology-Induced Geometry in sp2 Nanocarbon

69

3.2.1 Surface Curvature Generation in Graphene Sheets

69

3.2.2 Plastic Deformation of Carbon Nanotubes

71

3.3 Stone-Wales Defect

73

3.3.1 Symmetry Breaking by C–C Bond Rotation

73

3.3.2 Formation Energy

74

3.3.3 Out-of-Plane Displacement

75

3.3.4 Microscopic Observation

77

3.4 Defect of 5–7 Paired Type

78

3.4.1 Dissociation of a SW Defect

78

3.4.2 As a Seed of Surface Curvature

79

3.5 Peanut-Shaped C60 Polymers

80

3.5.1 Fusion of C60 Molecules

80

3.5.2 TLL State in C60 Polymers

81

3.5.3 Topology-Based Understanding

82

3.5.4 Curvature-Based Understanding

83

3.5.5 Electron-Phonon Coupling in C60 Polymers

85

3.6 Carbon Nanocoil

86

3.6.1 Benefit from Coiled Structure

86

3.6.2 Atomistic Modeling

86

3.6.3 Experimental Realization

88

3.6.4 Theoretical Prediction

88

3.7 State-of-the-Art Curved sp2 Nanocarbons

90

3.7.1 Nano-“Pringles”

90

3.7.2 Nano- “Tetrapod”

91

3.7.3 Nano-“Schwarzite”

92

3.8 Perspective

93

References

94

4 Topology by Design in Magnetic Nano-materials: Artificial Spin Ice

99

4.1 Introduction

99

4.2 Frustration, Topology, Ice, and Spin Ice

102

4.3 Simple Artificial Spin Ices

106

4.3.1 Kagome Spin Ice

106

4.3.2 Square Ice

110

4.4 Exotic States Through Vertex-Frustration

112

4.5 Emergent Ice Rule, Charge Screening, and Topological Protection: Shakti Ice

114

4.6 Dimensionality Reduction: Tetris Ice

118

4.7 Polymers of Topologically Protected Excitations: Santa Fe Ice

119

4.8 Conclusions

121

References

121

5 Topologically Non-trivial Magnetic Skyrmions in Confined Geometries

127

5.1 Introduction

127

5.2 Topological Effect in Magnetic Skyrmions

130

5.2.1 Topology in Magnetic Materials

130

5.2.2 Topological Stability of Magnetic Skyrmions and Emergent Magnetic Monopoles

131

5.2.3 Topological and Skyrmion Hall Effect

133

5.2.4 Skyrmion-Based Racetrack Memory (RM)

134

5.3 Origin of Magnetic Skyrmion

135

5.3.1 Magnetic Phase Diagram in Chiral Magnets

135

5.3.2 Mechanism of DM Interaction

138

5.4 Magnetic Skyrmions in Confined Geometries

140

5.4.1 Sample Fabrication Techniques

140

5.4.2 Lorentz TEM

142

5.4.3 Off-Axis Electron Holography for Imaging Magnetic Contrast

145

5.4.4 Edge-Mediated Skyrmion Phase and Field-Driven Cascade Phase Diagram

147

5.4.5 High Flexibility of Geometrically-Confined Skyrmions

149

5.5 Conclusions

153

References

153

6 Topological Phases of Quantum Matter

155

6.1 Introduction

155

6.2 Topology in Condensed Matter Physics

156

6.3 HgTe/CdTe Quantum Wells and Quantum Spin-Hall Insulators

159

6.4 Z2 Topological Insulators in Three Dimensions

160

6.5 Topological Crystalline Insulators

163

6.6 Topological Semi-metals

165

6.7 Topological Superconductivity

169

6.8 Strongly Correlated Topological Materials

171

6.9 Outlook and Conclusions

172

References

172

Biology and Mathematics

184

7 Theoretical Properties of Materials Formed as Wire Network Graphs from Triply Periodic CMC Surfaces, Especially the Gyroid

185

7.1 Introduction

185

7.1.1 Classical Geometry of the Gyroid and Graph Approximation for the Channels

187

7.1.2 P and D Surfaces

190

7.2 Theory

191

7.2.1 Overview

191

7.2.2 Summary of the Methods

192

7.2.3 The Gyroid Without Magnetic Field

193

7.2.4 Enhanced Symmetries from a Re-gauging Groupoid

197

7.2.5 Slicing, Chern Classes and Stability Under Perturbations

199

7.2.6 Possible Experimental Verification

200

7.2.7 The P Wire Network Without Magnetic Field

201

7.2.8 The D Wire Network and the Honeycomb Lattice Without Magnetic Field

201

7.3 Noncommutative Approach in the Presence of a Magnetic Field

205

7.3.1 Gyroid in the Presence of a Magnetic Field

206

7.3.2 P Wire Network in a Magnetic Field

207

7.3.3 D Wire Network in a Magnetic Field

207

7.3.4 Honeycomb in a Magentic Field

208

7.3.5 Possible 3d Quantum Hall Effect

209

7.4 General Theory and Possible Material Design

209

7.5 Discussion and Conclusion

210

References

211

8 Entangled Proteins: Knots, Slipknots, Links, and Lassos

213

8.1 Introduction

213

8.2 Entanglement in Proteins

214

8.3 Proteins with Knots and Slipknots

216

8.3.1 Classification and Description of Knots

216

8.3.2 Proteins with Knots and Slipknots – KnotProt Server and Database

220

8.3.3 Knotting Fingerprint for Knots and Slipknots

221

8.3.4 Folding of Knotted Proteins

224

8.3.5 Function of Knotted Proteins

227

8.4 Links in Proteins

228

8.5 Proteins with Lassos

231

8.6 Conclusions

234

References

235

Soft Matter and Biophotonics

239

9 Topology in Liquid Crystal Phases

240

9.1 Introduction

240

9.2 Schlieren Textures and Two-Dimensional Nematics

243

9.3 The Homotopy Theory of Defects

246

9.3.1 Point Defects: Hedgehogs

247

9.3.2 Disclination Loops

248

9.3.3 The Pontryagin–Thom Construction

250

9.4 Illustrations in Liquid Crystals

251

9.4.1 Skyrmions

251

9.4.2 Colloids

252

9.4.3 Torons and Hopf Textures

254

9.5 Smectics

255

9.6 Geometry of Line Fields

258

9.6.1 Umbilics

259

9.6.2 Chirality Pseudotensor

260

9.7 Cholesterics

261

9.7.1 ? Lines: Defects in the Pitch

262

9.8 Knotted Fields

262

9.8.1 Homotopy Classification

263

9.8.2 Construction of Knots in Nematics

264

References

266

10 Topologically Complex Morphologies in Block Copolymer Melts

269

10.1 Introduction

269

10.2 AB Block Copolymers

271

10.3 ABC Block Copolymers

273

10.4 Blending Molecular Architectures

279

10.5 Concluding Remarks

280

References

284

11 Topology of Minimal Surface Biophotonic Nanostructures in Arthropods

285

11.1 Introduction

286

11.2 Topology of Arthropod Biophotonic Nanostructures

287

11.3 Self-assembly of Minimal Surface Biophotonic Nanostructures

291

11.4 Biomimetic Potential of Minimal Surface Biophotonic Nanostructures

295

11.5 Conclusion

296

References

297

Index

301