Wireless Communications for Power Substations: RF Characterization and Modeling

von: Basile L. Agba, Fabien Sacuto, Minh Au, Fabrice Labeau, François Gagnon

Springer-Verlag, 2018

ISBN: 9783319913285 , 203 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 139,09 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Wireless Communications for Power Substations: RF Characterization and Modeling


 

Foreword

7

Preface

9

Acknowledgments

12

About the Authors

13

Contents

16

1 Introduction

20

1.1 Motivation

20

1.2 Monograph Organization

22

1.3 Contributions

23

2 EMI and Wireless Communications in Power Substations

26

2.1 Introduction

26

2.2 Concept of EMI and Classification

26

2.2.1 Definition of EMI Sources

27

2.2.2 Natural Noise Sources

27

2.2.3 Man-Made Noise Sources

28

2.3 Electromagnetic Interference in Substations

28

2.3.1 Functions of Power Substations

28

2.3.2 Pieces of Equipment and Electrical Operations

29

2.3.2.1 Corona Effect

30

2.3.2.2 Partial Discharges

31

2.3.3 Early Impulsive Noise Measurements

32

2.3.4 Ionization Process and Electrical Discharge in Gases

32

2.3.5 Partial Discharges Mechanism

33

2.3.6 Measurements and Characterization of Partial Discharge Sources

35

2.3.6.1 Measurement Techniques

35

2.3.6.2 PD Currents Impulses

35

2.3.6.3 PD Electromagnetic Radiations

36

2.3.6.4 Characterization of PD Impulses

37

2.3.7 Partial Discharge Modeling

37

2.3.7.1 Physical PD Models

38

2.3.7.2 Statistical PD Models for Wireless Channels

38

2.4 Characterization and Impulsive Noise Models

40

2.4.1 A Statistical Characterization of Impulsive Noise

40

2.4.2 Impulsive Noise Models

41

2.4.3 Probability Models of Impulsive Noise

42

2.4.3.1 Memoryless Models

43

2.4.3.2 Impulsive Noise with Memory: Burst Noise

46

2.5 Wireless Communications in Substations

49

2.5.1 Communication Channels in Presence of Impulsive Noise

49

2.5.2 Wireless Technologies

50

2.5.3 Existing Systems for Wireless Communications in High Voltage Environment

50

2.6 Summary

52

3 Impulsive Noise Measurements

53

3.1 Objectives of the Measurement Campaign

54

3.2 Measurement Setup

54

3.2.1 Design of the Setup

55

3.2.2 Tests in Laboratory

56

3.2.3 Impulse Detection Method

58

3.3 Measurements in Substation 1

61

3.3.1 Substation Presentation

61

3.3.2 Locations of the Antenna

63

3.3.3 Results

64

3.4 Measurements in Substation 2

65

3.4.1 Substation Presentation

65

3.4.2 Locations of the Antenna

66

3.4.3 Results

66

3.5 Classification of Impulsive Noise Characteristics

67

3.5.1 Amplitude

67

3.5.2 Impulse Duration

68

3.5.3 Repetition Rate

70

3.5.4 Sample Value

70

3.5.5 Representative Characteristics

71

3.6 An Experimental Characterization of the Discharge Sources

71

3.6.1 Amplitude of Measured Signals

72

3.6.2 Signal Processing Tools for Impulsive Noise Measurement

72

3.6.2.1 The Denoising Process

72

3.6.2.2 Short-Time Analysis for Impulsive Signals

73

3.6.2.3 Temporal Location of an Impulse

74

3.6.3 Characterization Based on First-Order Statistics

75

3.6.3.1 PRPD Representation

76

3.6.3.2 Statistical Distribution of PD Characteristics

77

3.6.4 Characterization Based on Second-Order Statistics

77

3.6.4.1 Typical Waveform and Spectrogram

79

3.6.4.2 Power Spectral Density

81

3.6.4.3 Power Spectral Density of an Impulse

81

3.6.4.4 Average Power Spectral Density

81

3.7 Representative Parameters for Classic Impulsive Noise Models

83

3.7.1 Bernoulli-Gaussian Model

83

3.7.2 Middleton Class-A Model

83

3.8 Conclusion

85

4 A Physical Model of EMI Induced by a Partial Discharge Source

87

4.1 Introduction

87

4.2 The Partial Discharge Phenomenon

88

4.3 The Physical Model of Partial Discharge Source

89

4.3.1 Electric Field Stress

89

4.3.2 Discharge Process

91

4.3.3 Current and Charge Density

93

4.4 The Electromagnetic Radiation of the Interference Source Induced by Partial Discharge

93

4.4.1 Electric Dipole formulation

94

4.4.2 Power Radiation of the Interference Source Received at the Antenna

95

4.4.3 Modeling Impulsive Waveforms and PSD

96

4.4.4 Brief Summary of Interference Induced by DischargeSource

96

4.5 Experimental Characterization Process of the Interference Source

98

4.5.1 Definition of Characterization Metrics

98

4.5.2 Denoising Process

98

4.5.3 Short-Time Analysis Process

98

4.6 Experimental Validation

99

4.6.1 Brief Description of Measurement Setup

99

4.6.1.1 The Measurement Setup

99

4.6.1.2 PD Sources from Stator Bar

99

4.6.2 Simulation Setup

100

4.6.2.1 Calculation of the Electric Field Along the Surface

100

4.6.2.2 Discharge Process in Air Cavity Parameters

101

4.6.2.3 Stochastic Property of the Emitted Radiations of PD Sources

103

4.6.3 Simulation-Measurement Comparison

103

4.6.3.1 PRPD Comparison

103

4.6.3.2 Statistical Distributions Comparison

104

4.6.3.3 PSD and Waveforms of Impulses

107

4.7 Conclusion

108

5 Analysis and Modeling of Wideband RF Signals Induced by PD Using Second-Order Statistics

110

5.1 Introduction

110

5.1.1 Main Contribution and Organization

111

5.2 Measurement Setup

112

5.3 Conjectures and Mathematical Formulation of EM Waves

112

5.3.1 Second-Order Statistics

112

5.3.1.1 Time-Frequency Analysis

112

5.3.1.2 Autocorrelation Function

113

5.3.1.3 Results from the Measurement Campaigns

113

5.3.2 A Physical Interpretation

114

5.4 The Proposed Model

115

5.4.1 Theory of Filters and Its Relationship with Time Series Models

115

5.4.2 Definition of the Time Series Model

116

5.4.3 Tests for Unit Roots

117

5.4.4 Estimation and Selection

119

5.5 The Goodness-of-Fit

120

5.5.1 Analysis of the Residuals

120

5.5.1.1 Residuals of Fitted ARMA(7,2)

121

5.5.1.2 Residuals of Fitted ARMA(4,1)

122

5.5.2 Tests for Heteroskedasticity

123

5.5.3 Analysis of the Residuals of the Improved Models

125

5.5.4 Summary

129

5.6 Simulation and Results

130

5.6.1 Simulation Parameters

130

5.6.2 A Comparison of Measurement vs. Simulation Results

130

5.6.3 Analysis of Simulated Impulsive Waveforms

131

5.6.4 Advantages and Limitations of the Proposed Model

132

5.7 Conclusion

133

6 Wideband Statistical Model for Substation Impulsive Noise

136

6.1 Introduction to PMC Model

136

6.2 Impulsive System and Oscillations

139

6.3 Damping Effect

143

6.4 Transition Matrix

143

6.5 Parameter Estimation

147

6.5.1 Fuzzy C-Means Algorithm

147

6.6 Results

149

6.6.1 Divergence Between Measurements and Models

150

6.6.2 Spectrum Analysis

153

6.7 Representative Parameters for PMC Model in Wide Band

154

6.8 Conclusions

155

7 Impulsive Noise in a Poisson Field of Interferers in Substations

158

7.1 Introduction

158

7.2 A Mathematical Formulation of Multiple PD Interference Sources

159

7.2.1 Electromagnetic Radiations of Multiple PD Sources

159

7.2.1.1 The Emission of the PD Impulses

159

7.2.1.2 Basic Assumptions of Spatial and Temporal PD Events

160

7.2.2 Propagation of EM Waves Induced by PD Sources

160

7.2.2.1 The Noise Process Observed by the Receiver

161

7.2.2.2 A Generic Temporal Impulsive Waveform from PD

161

7.2.2.3 The Attenuation Factor

162

7.2.3 Spatial and Temporal Distribution of PD Sources

162

7.3 Statistical Analysis

164

7.3.1 Probability Density Function

164

7.3.2 Probability Distribution

168

7.3.3 Tails and Moments

168

7.3.3.1 Moments of ?-Stable Distributions

169

7.3.3.2 Moments of Shot-Noise Processes

169

7.3.4 A Summary of Important Findings

170

7.4 Experimental and Simulation Results

171

7.4.1 Measurements in Substations

171

7.4.2 A Procedure for Estimation

172

7.4.3 Measurement-Simulation Comparison

173

7.4.3.1 First-Order Statistics

173

7.4.3.2 Second-Order Statistics

175

7.5 A Rapid Identification of PD Sources Using Blind Source Separation

177

7.5.1 Motivation

178

7.5.2 System Model

178

7.5.3 Blind Source Separation via Generalized Eigenvalue Decomposition

180

7.5.4 Simulation and Results

181

7.6 Conclusion

183

8 Conclusions

185

8.1 Monograph Summary

185

8.2 On the Practical Use of the EMI Models

188

References

191

Index

201